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Abstract. We consider the analytical solution of the mean spherical approximation for the 
pair-connectedness function of a dipolar hard-sphere fluid. Based on this solution, we 
propose an exponential approach to the continuum percolation of dipolar fluids. 

1. Introduction 

The pair-connectedness function p t ( l ,  2) (Coniglio et a1 1977) is a very suitable tool to 
describe molecular clustering in fluids. This is the probability density for two molecules, 
labelled 1 and 2, to be in the differential elements d l  and d2 around their coordinates 
specified by 1 and 2, respectively, with both molecules belonging to the same cluster. 
We consider that two molecules of the fluid belong to the same cluster if they are either 
directly connected to each other or indirectly connected through a path of directly 
connected molecules. The concept of directly connected particles is eventually depen- 
dent on the particular definition of the model. 

The connectedness correlation functions, although useful from a theoretical point 
of view, are not directly measurable. Actually, in percolation studies, one is more 
interested in the threshold percolation density pc, which in fact is a measurable quantity. 
Theoretically, we interpret pc as the critical density at which the molecules in the fluid 
are connected to such an extension as to constitute clusters of macroscopic size. At 
this point it is convenient to introduce the total pair-connectedness function given by 
ht( l ,  2) = (p/4n)-'pt(l, 2) - 1 withpthenumberdensity. Intermsofht(l ,2),  themean 
cluster size is defined as (where V = sample volume) 

(1) 

in close analogy with the compressibility equation. Therefore pc satisfies 

4 P C )  + W. (2) 

In the last few years, the problem of obtaining the pair-connectedness functions for 
several models of atomic fluids has been addressed through the solution of integral 
equations (Chiew and Glandt 1983, Chiew et a1 1985, Stell 1984, DeSimone et a1 
1986a, b). These models involve particles that interact among them via central forces. 
t Consejo Nacional de Investigaciones Cientificas y TCcnicas (CONICET), Argentina. 

0953-8984/89/315205 + 11 $02.50 @ 1989 IOP Publishing Ltd 5205 



5206 F Vericat 

In this work, we consider the percolation problem for a system with orientation- 
dependent interactions, namely a dipolar hard-sphere fluid, which is an ensemble of 
hard spheres of diameter U with a central point dipole moment p. Two particles are 
taken as directly connected to each other if their centres are at distances shorter than a 
given value d. 

We show how the pair-connectedness functions for this model can be obtained in 
analytical form using the mean spherical approximation (MSA) of Lebowitz and Percus 
(1966), conveniently adapted to connectivity. 

The possibility of having an analytical solution emerges in a natural way from 
Wertheim’s MSA solution (Wertheim 1971, Hansen and McDonald 1976) for the ordinary 
correlation functions of the dipolar hard-sphere fluid and from the work of DeSimone 
etal(1986a, b), where the analyticalPercus-Yevickconnectednessfunctions of extended 
hard spheres are reported for connectivity distances such that U < d < 20. 

As Wertheim has so elegantly shown, the solution of the MSA for the dipolar hard- 
sphere fluid reduces to the solution of three Percus-Yevick integral equations for three 
hypothetical hard-sphere fluids, one for each term in the invariant expansion of the 
dipole-dipole correlation functions. A similar separation can be achieved in solving 
the connectivity problem. Therefore, the problem becomes analytically tractable for 
connectivity distances that satisfy U < d < 20. 

However, the MSA expansion for the pair-connectedness function has the very unde- 
sirable property that its hard-sphere term is completely decoupled from the dipolar 
contributions. Therefore the mean cluster size in equation (1) does not depend at all on 
the dipolar interaction. 

A related theory which still preserves the analyticity of the MSA is the exponential 
approximation (EXP) (Andersen and Chandler 1972). In this approximation, adapted to 
connectivity, the mean cluster size can be written as a function of the dipolar strength in 
terms of the generalised Bessel functions recently reported by Blum and Torruella 
(1988). The same is true for the connectedness version of the reference average Mayer 
function (RAM) theory (Smith 1974, Perram and White 1974) and the y expansion of 
Gubbins and Gray (1972). We briefly discuss these exponential expressions in connection 
with the percolation of dipolar fluids. 

2. Mean spherical approximation (MSA) pair-connectedness function 

We denote the coordinates of a given molecule, labelled i, by i = ( T i ,  hi), where 6 is the 
position of the sphere centre and hi gives the orientation of the point dipole. 

All distances are expressed in units of the sphere diameter cr. Define p* = po3, a = 
d / o  and where p is the Boltzmann thermal factor. 

The pair interaction between two such dipolar molecules is 

Here r12 is the magnitude and PI2 the direction of the vector of FI2 = Fl - F2. 

ively, are naturally defined 
Two pair potentials appropriate for connected and disconnected molecules, respect- 
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( 5 )  
r12 < a 

V(1,2> r12 > a 

m 
V*(l, 2) = { 

with V(1,2) the 'true' potential given in equation (3). 

exp[-pV(l, 2)] as a sum of two terms 
Following Hill (1955), we can further separate the Boltzmann factor e( l ,2)  = 

e( l ,2)  = e+(1,2) + e*(l, 2). (6) 
Here the Boltzmann factors et(l,  2) and e*(l, 2) are proportional to the probabilities of 
finding particles 1 and 2 in the elements d l  and d2 when they are directly connected and 
disconnected, respectively 

e t ( l ,  2) = exp[-pV+(l, 2)] 

e*( l ,  2) = exp[-pV*(l, 2)]. 

Since e ( l ,2 )  is the statistical weight in the configuration integrals, any pair of stat- 
istical functions can be separated as e ( l ,2 )  in equation (6). Thus, the total and the direct 
correlation functions are written 

h( l ,2 )  = hi ( l ,  2) + h*(l ,  2) 

c ( l ,2 )  = c$(1,2) + c*(l ,  2). 

(9) 

(10) 
We focus on the total connectedness function. The MSA equation for ht( l ,2)  reads 

h t ( l ,  2) = c t ( l , 2 )  + (p*/4n) J d 3  h t ( l ,  3)ct(3, 2) (11) 

h+(L  2) = g o ,  2) r < a  (12) 

C+(l, 2) = 0 r > a. (13) 

Here g( l ,2 )  = h( l ,2 )  + 1, h( l ,2 )  being the total correlation function for the dipolar 
hard-sphere fluid. 

Wertheim's solution of h( l ,2 )  in the MSA (Wertheim 1971) is expanded in terms of 
the following three rotational invariants (we use Blum's (1978) notation): 

@OOO(l, 2) = 1 

@llo( l ,  2) = -3'I2(d1 - d2) (14) 
@'12(l, 2) = (3/10)''2[3(d~ *t)(sZ2 s t )  - ( h 1  * sZ,)]. 

Therefore ht(l,  2) and ct(l,  2) have a similar invariant expansion 

f t ( l ,  2) = ftOOO(r)@oOO(l, 2) + ftllo(r)@llo(l, 2) +ft112(r)@11z(l, 2) (15) 
with? = ht or c'. 

pendent equations. To this end, we first go to k-space using ( E  = H or C) 
The connectedness Ornstein-Zernike (oz) equation ( l l ) ,  decouples into three inde- 

2m 

where (m, x )  = (0, 0), ( 1 , O )  and (1, l), j i ( x )  is the spherical Bessel function of order I 



5208 F Yericat 

and we use the notation and conventions of Edmonds (1957) for the 3-j symbols. We 
have (Blum and Torruella 1972) 

a i m @ )  = q y k )  + p * E i ; m ( k ) c ; m ( k ) .  (17) 

These equations are transformed back to real space by means of 

f'," ( r )  = ( - l )X4~(2n)  -3/2 d k kZj,(kr)Eim ( k )  iom 
and 

Jsy" ( r )  = (- wfim (r)/K,". 

q(2E) - d-E) = (4n/3)P*P*2 

Here Kg = 1, while KA (= -2K:) satisfies Wertheim's equation 

with 5 = KAp*/12 and q ( x )  = (1 + 2 ~ ) ~ / ( 1  - x)~. 

Therefore we obtain 

with p," = K,"p*. 
The original ( f f m m [ )  and the auxiliary functions (rim) are related by Blum (1978) 

f b ' ( r )  = -(1/3)1/2ft110(r) + (2/15)ll2 (f'112(r) - 3 [ dtf'"'(t)/t) 

fi'(r) = (1/3)1/2ft110(r) + (1/30)'~2(ft''2(r) - 3 1- dtfii12(t)/t). 
r 

Therefore, the closures of equation (21) are (anm = Kronecker delta) 

him(r) = g,"(r) - d1, r < a  (23) 

c ; m ( r )  = 0 r >  LY. (24) 

The function g,"(r) is the Percus-Yevick correlation function (Percus and Yevick 1958) 
for a system of hard spheres of diameter 1 and density p," :g,"(r) = g(")(r; p,"). If 
1 < a < 2, then we just need to know g(")(r; p; )  in the interval 1 < r < 2 (for r < 1 it 
is identically zero). In the interval 1 < r < 2, g(")(r; p,") is given in terms of 
q = np;/6 by (Thiele 1963, Wertheim 1963) 
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where 

Aj = Q(zj ) /P’ (z j )  
with 

Q(s) = ( ~ 3 . s ~  - a o s ) / l 2 ~  

P’(s) the derivative of the polynomial 

P(s )  = s3 + u2s2 + a1s + a0 
and zj 0’ = 0 ,1 ,2 )  the three roots of the algebraic equation P(s) = 0. In these equations, 

a0 = -12ya 

a,  = -12yb 

a2 = 12y(a/2 + b)  

U 3  = 12y(u + b)  

with 
U = (1 + 2 ~ ) / ( 1  - q)2 b = - 3 ~ / 2 ( 1  - v ) ~ .  

The problem of finding the pair-connectedness functions (equation (15)) has been 
reduced to solving the integral equation given by equations (21), (23) and (24). In the 
Appendix, we outline its solution following Baxter’s factorisation technique (Baxter 
1968). 

The mean cluster size is obtained by inserting the invariant expansion (15) for the 
total connectedness function into equation (1). We have 

s(p) = 1 + 4np dr r2htW(r) .  (31) h 
Since equation (21) for hio (Y) decouples completely from the corresponding 

equations for h&’(r) and &ll(r), we see that htm(r) is the pair-connectedness function 
for extended hard sphere (DeSimone et a1 1986a, b) and it does not depend on the dipole 
strength. Therefore, the critical density obtained from equation (2) is the same as for 
simple hard spheres. In short, the MSA critical density does not take into account the 
dipoles. 

The conclusion is that the MSA by itself is not useful for describing the percolation 
threshold of dipolar, and in general multipolar, fluids. However, the MSA is susceptible 
to extensions where this disadvantage is overcome. In the next section, we explore some 
of these possible extensions. 

3. Exponential approaches to percolation 

The shortcomings of the MSA for describing the structure of dipolar fluids are well known. 
Nowadays, several theories which improve the MSA correlation functions are available. 
Integral equations, such as the linearised (LHNC) are quadratic (QHNC) hypernetted- 
chain approximation (Patey 1977, 1978), as well as some perturbation theories, have 
been demonstrated to be superior to the MsA for dipolar fluids. Within these last theories, 
we mention the exponential (EXP) approximation of Andersen and Chandler (1972), the 
perturbation theory of Gubbins and Gray (1972) and the reference average Mayer 
function theory (RAM) (Smith 1974, Perram and White 1974). 

All these approximations (except the LHNC) are non-linear . Therefore, the angular 
average of the total correlation function of a dipolar fluid is coupled to the remaining 
harmonic projections and depends on the dipole strength. As a consequence, the 
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compressibility, which is proportional to the angular average, also depends on the 
dipole moment of the molecules. Thus, they are good candidates to improve also the 
connectedness MSA because they take into account the effect of the dipole-dipole 
interaction over the mean cluster size. 

In the application of the perturbation theories to dipolar hard spheres, the complete 
pair potential (equation (3)) is split 

V(1,2) = VO(l,2) + w(l ,2)  (32) 
with 

(33) 

(the reference pair potential) and 

p ~ ( 1 ,  2) = /3V112(r)@112(l, 2) = -(10/3)1/2(p*2/r3)@112(1, 2) (34) 
the dipolar interaction, which is taken as the perturbation. 

The EXP pair correlation function is (Andersen and Chandler 1972) 

g(L 2) = go(4 exp[C(1,2)1. (35) 

Here, go(r)  = gooo(r) denotes the reference pair correlation function and C(1,2) is the 
renormalised potential, sum of generalised chains whose bonds are hMo(r) and pw(l ,2)  
functions. The renormalised potential can be expressed in terms of the MSA solution: 

c(1,  2) = hMSA(1, 2) - h%A(r) = hG:A(r)@"'(l, 2) + h@A(r)@112(1, 2). (36) 

From equation (35), we see that the connectedness part of the total correlation 

h t ( l ,  2) = g'(1,2) = gb(r)  exp[C(1,2)] + go* (r){exp[C(l, 2)]}t. (37) 

Here, {exp[C(l, 2)]}; denotes the subset of diagrams of exp[C(l, 2)] whose root points 
1 and 2 belong to the same cluster. We make the further approximation 

function is 

{exp[C(1, 2)lIt = exp[Ct(l, 211 

C + ( l ,  2) = h ; g ( r ) @ l y l ,  2) + h ;&( r )@yl ,2 ) .  

(38) 

(39) 

with C t ( l ,  2) the connectedness part of C(1,2): 

Here htl'O(r) and ht112(r) are the (110) and (1 12) radial coefficients in the invariant 
expansion (15) of the MSA total connectedness function ht( l ,  2). 

The approximation (38) implies discarding all the diagrams of {exp[C(l, 2)]}t which 
are not products of diagrams of C t ( l ,  2). Then (37) yields 

h t ( l ,  2) = g'M"!i(r) exp[C(1, 211 + [g@A(r) - ggs"i(r)] exp[Ct(l ,  2)] (40) 

with C(1,2) and C t ( l ,  2) given by equations (36) and (39), respectively. 
The substitution of h'(1,2) in (1) for equation (40) gives the mean cluster size. Then, 

from equation (2), the critical percolation density can be obtained. 
The integrations involved are greatly simplified if the invariant expansion for the 

exponential of tensorial expressions, recently reported by Blum and Torruella (1988), 
is used. Instead of expanding the renormalised potentials C(1,2) and C'(1,2) in the 
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invariant representation (equations (39) and (36)), it is convenient to expand them in 
the irreducible representation (Blum 1978, Blum and Torruella 1988). We have 

C+( l ,  2) = htO(r)(a81(1,2) + hyr ) [@; l ( l ,  2) + @!!1(1,2)] (41) 

and an analogous expression for C(1,2). 

harmonics D?,(h) (Edmonds 1957) by 
The irreducible angular functions are given in terms of the generalised spherical 

OT(I ,  2) = [(2m + 1)(2n + I ) ] ~ / ~ D & ( ~ Z ~ ) D ; ~ ( G ~ ) .  (42) 

The radial coefficients in equation (41) are related to the radial coefficients in the 
invariant expansion (39) according .to 

hto(r)= (1/3)”*hE:i(r) - (2/15) 1/2ht112 MSA(r) 

(43) h ‘l ( r )  = - (1/3) ”* h $;I ( r )  - (1/30) ‘I2 h $!& ( Y ) .  

Similar relations are defined for the projections of C(1,2). 
According to Blum and Torruella (1988), the exponential exp[Ct(l, 2)] is expanded 

exp[C+(l, 211 = C. i T { h s s A ( r ) ;  h&A(r)}@Y(l, 2). (44) 
mnX 

The indices take the values (m, n,  x) = (0, 0, 0), (1, 1,0),  (1 ,1 ,1)  and (1,1, -1). We 
have explicitly indicated that the generalised Bessel functions i y  are functionals of 
the irreducible functions h&,(r) and hGSA ( r ) .  The corresponding expression for 
exp[C(l, 2)] is obtained by eliminating all daggers in equation (44). 

When expression (40) for h’(1,2), with the exponentials given by their irreducible 
expansions (44), is substituted in formula ( l ) ,  we can see that the only terms of the 
irreducible expansions that contribute to the mean cluster size are those in which 
(m, n,  x) = ( O , O ,  0) .  

The mean cluster size reads 

In this case, the generalised Bessel functions take a simple form (Blum and Torruella 
1988) 

1 

i p { f O ( r ) ; f l ( r ) }  = d z  io(3{[f1(r)]* - ~ * [ f ’ ( r ) ] ~  - ~ ~ [ f ~ ( r ) ] * > ” ~ ) .  (47) 
-1 

Here, io(x) = sinh(x)/x is the spherical modified Bessel function of zero order. 

ordery expansion of Gubbins and Gray (1972) 
Other perturbation theories can be worked in the same way. For example, the first- 

g ( l , 2>  = go(r> exp[-Bw(l, 211 (48) 
where go(r)  denotes the pair correlation function for the reference potential in equation 
(32). We can use go(r)  = g f g A ( r ) .  
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The connectedness pair correlation is 

with wi(l, 2) the perturbative part of the connectedness pair potential (4). 
TheBoltzmannfactorsexp[ -pwt(l ,  2)] andexp[ -pw( l ,  2)] haveirreducible expan- 

sions similar to equation (44). The generalised Bessel functions are now functionals of 

and 

p u o ( r )  = -(2/3)'/2p*2/~3 

( r )  = - (1/3) '"p * * / r3 .  

The final expression for the mean cluster size is formally given by equations (45) and 
(46) but with pho, ph' ,  pht0 and ph" instead of h&sA, hhsA, h&* and h & A ,  respect- 
ively, Also, the integral involving exp( -put) has a, instead of CO, as upper limit. 

4. Concluding remarks 

We have outlined the solution of the MSA for the pair connectedness function of a dipolar 
hard-sphere fluid in which two molecules are considered as directly connected when the 
mutual separation is shorter than a given distance d. 

Assuming that the pair connectedness functions have an invariant expansion similar 
to that proposed by Wertheim for the ordinary pair correlation functions in a dipolar 
fluid, then the connectedness MSA integral equation decouples into three independent 
connectedness Percus-Yevick (or MSA) integral equations for extended hard spheres of 
the same diameter and at Wertheim's 'densities'. 

As we show in the Appendix, the connectedness Percus-Yevick (or MSA) equation 
for hard spheres transforms into a system of two coupled fourth-order, linear, non- 
homogeneous equations with the proper boundary conditions. This system is solvable 
using the regular techniques for differential equations (e.g. D'Alembert substitution). 

The MSA connectedness correlation functions give a mean cluster size which com- 
pletely ignores the dipole strength. The reason for this is that the angular average of 
ht( l ,  2) equals the (0, 0,O) projection htoo0(r) and that the integral equation for htooO(r) 
is simply the equation for neutral hard spheres. 

Perturbative approximations, such as the EXP approximation of Andersen and 
Chandler or the first-order y expansion of Gubbins and Gray, instead, have an angular 
average which mixes the different projections of the MSA connectedness correlation 
functions, giving a mean cluster size which does depend on the dipole strength. These 
or similar approaches should be a simple route in order to study, at least at a qualitative 
level of accuracy, the dependence of the dipole-dipole interactions on the critical 
percolation density in continuous systems. 
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Appendix 

In this Appendix, we outline the steps we need to solve, in analytical form, the integral 
equation defined by equations (21), (23) and (24). To this end we use Baxter's 
factorisation technique (Baxter 1968). The analytical solution exists for connectivity 
distances d such that 1 < d < 2. 

As we have discussed in the text, for each of the three sets of indices (m,  x) = (0 ,  0), 
(1,O) and (1, l), equations (21), (23) and (24) define an integral equation for him") in 
r < aand C i m ( r )  in r > a. In order to simplify the notation, in what follows, we will omit 
the indices m and x, except in the Kronecker delta. 

Using Baxter's factorisation, equation (21) is rewritten 

'0 

with q'(r)  = dq(r)/dr. 
If the function q(r) is known, then (Al) is a Fredholm-type integral equation from 

which ht(r) can be obtained for r > a. In particular Perram's method (Perram 1975) is 
a very suitable route for solving it in numerical form. 

The Baxter function q(r) is zero for r 3 a. In order to determine it for 0 < r < a, we 
divide the interval (0 ,  a) into three sub-intervals, (0 ,  a - l) ,  (a - 1, 1) and (1, a), and 
write 

For Y < a, equation (Al) can be written (using equation (23)) 

rg(")(r) = (Gr + b)6,, - q'(r) + 1271 d t ( r  - t)g('')(lr - tI)q(t) Ioff 
with 

G =  1 - 1271/0adiq(t) b = 1271 Joe d t  tq(t). 
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Therefore for a - 1 < r < 1, we have 

q(r )  = q 2 ( r )  = ( c r y 2  + br)6,, + c 
while for 0 < r < a - 1 equation (A3) can be written in two alternative forms 

q ; ( r )  = (csr + b)6,, - 1217 / @  d t ( t  - r)g(PY)(t - 4q3( t  - 1) 
r f l  

q;(r)  = -(. + l)g(PY)(r + 1) + (ar + 6)6,, + 1217 
x lor d t  ( Y  + 1 - t)g(")(v + 1 - t)ql(t). 

By repeatedly differentiating equations (A6) and (A7), we obtain 

4'l"(r) - a2q;"(r) + a lqY(Y)  - aoq i ( r )  - aoqi(r) - a,q! (r )  

= (-soar + a l a  - a,b)6,, 

qY(4 + a*q;"(r) + a,q1;(r) + aoqi (r> + a o q ; ( r )  - a,qY(r) 

= (aocr + a,a + aoa + a,b)61,. 

- 

Form = 0, a,, = 0 and we have the system of linear homogeneous equations con- 
sidered by DeSimone et at (1986a) for the connectedness of extended hard spheres. For 
m = 1, we are left with a system of two coupled, fourth-order, linear, non-homogeneous 
differential equations. It transforms by using D' Alembert substitution into a system of 
six first-order, linear differential equations. 

In order to determine q2(r), q l ( r )  and q3(r) completely from equations (A5), (A8) 
and (A9) (or from the resulting system of six equations), we need nine boundary 
conditions (one for C), apart from the conditions (A4) for i a n d  6. They are 

q3(a - 1) = 0 

q1(a - 1) = q*(a - 1)61, = [a(& - 1)*/2 + 6 + CISlm 

q3(0) = q2(l)61m = (i/2 + 6 + C)6,, 

qi(a - 1) = [i (a - 1) + 6]6,, 

q i (0 )  = -H(O) + (a + b)6,, 

q;l(a - 1) = a3q,(a - 1) + a61, 

qy(a - 1) = [ao - a2(ao + a,)]q3(cY - 1) + a,q i (a  - 1) 

qY(0)  = - H " ( O )  - [a0 - a2(ao + a1)1q1(0> + a,qi(O). 

q1;(0) = -H'(O) + a3ql(0) + G61, 

In these equations we have used 

H ( r )  = ( r  + l)g(PY)(r + 1). 
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Thus, 

~ ( 0 )  = ( a  + b)  = (I + q/2) / (1  - q ) 2  

H’(0) = U - 1 2 7 ( ~ / 2  + b ) ( ~  + b)  = -(5q2 + 577 - 1)/(1 - q)3  

H’(0) = ~ ( 2 1 7 ~  + 1 2 ~  - 6)/(1 - v ) ~ .  
(A12) 
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